Overview of Laboratory Type Centrifuge

By: doyouknow | Views: 1845 | Date: 22-Nov-2011

A laboratory centrifuge is a piece of laboratory equipment, driven by a motor, which spins liquid samples at high speed.

Overview:


A laboratory centrifuge is a piece of laboratory equipment, driven by a motor, which spins liquid samples at high speed. There are various types of centrifuges, depending on the size and the sample capacity.
Like all other centrifuges, laboratory centrifuges work by the sedimentation principle, where the centripetal acceleration is used to separate substances of greater and lesser density.



Types:


There are various types of centrifugation:


• Differential centrifugation, often used to separate certain organelles from whole cells for further analysis of specific parts of cells
• Isopycnic centrifugation, often used to isolate nucleic acids such as DNA
• Sucrose gradient centrifugation, often used to purify enveloped viruses and ribosome, and also to separate cell organelles from crude cellular extracts

 .


There are different types of laboratory centrifuges:


• Micro centrifuges :(devices for small tubes from 0.2 ml to 2.0 ml (micro tubes), up to 96 well-plates, compact design, small footprint; up to 30.000 g)
• Clinical centrifuges :(devices used for clinical applications like blood collection tubes, low-speed devices)
• Multipurpose bench top centrifuges :(devices for a broad range of tube sizes, high variability, big footprint)
• Stand alone centrifuges :(heavy devices like the ultracentrifuge)


Many centrifuges are available with (refrigerated device) or without cooling function. There are different providers of laboratory centrifuges like Eppendorf, Thermo-Heraeus, Thermo-Sorvall, Hettich, Beckmann-Coulter, MSE, Sigma and Awel.

Centrifuge tubes:


Centrifuge tubes or centrifuge tips are tapered tubes of various sizes made of glass or plastic. They may vary in capacity from tens of milliliters, to much smaller capacities used in micro centrifuges used extensively in molecular biology laboratories. The most commonly encountered tubes are of about the size and shape of a normal test tube (~ 10 cm long). Micro centrifuges typically accommodate micro centrifuge tubes with capacities from 250 μl to 2.0 ml. These are exclusively made of plastic.


Glass centrifuge tubes can be used with most solvents, but tend to be more expensive. They can be cleaned like other laboratory glassware, and can be sterilized by autoclaving. Plastic centrifuge tubes, especially micro centrifuge tubes tend to be less expensive. Water is preferred when plastic centrifuge tubes are used. They are more difficult to clean thoroughly, and are usually inexpensive enough to be considered disposable.


Safety:

The load in a laboratory centrifuge must be carefully balanced. This is achieved by using a combination of samples and balance tubes which all have the same weight or by using various balancing patterns without balance tubes.[1] Small differences in mass of the load can result in a large force imbalance when the rotor is at high speed. This force imbalance strains the spindle and may result in damage to the centrifuge or personal injury. Some centrifuges have an automatic rotor imbalance detection feature that immediately discontinues the run when an imbalance is detected.


Before starting a centrifuge, an accurate check of the rotor and lid locking mechanisms is mandatory. Centrifuge rotors should never be touched while moving, because a spinning rotor can cause serious injury. Modern centrifuges generally have features that prevent accidental contact with a moving rotor as the main lid is locked during the run.


Centrifuge rotors have tremendous kinetic energy during high speed rotation. Rotor failure, caused by mechanical stress from the high forces imparted by the motor, can occur due to manufacturing defects, routine wear and tear, or improper use and maintenance. Such a failure can be catastrophic failure, especially with larger centrifuges, and generally results in total destruction of the centrifuge. While centrifuges generally have safety shielding to contain these failures, such shielding may be inadequate, especially in older models, or the entire centrifuge unit may be propelled from its position, resulting in damage to nearby personnel and equipment. Uncontained rotor failures have shattered laboratory windows and destroyed refrigerators and cabinetry. To reduce the risk of rotor failures, centrifuge manufactures specify operating and maintenance procedures to ensure that rotors are regularly inspected and removed from service or derated (only operated at lower speeds) when they are past their expected lifetime.


Another potential hazard is the aerosolization of hazardous samples during centrifugation. To prevent contamination of the laboratory, rotor lids with special aerosol-tight gaskets are available. The rotor can be loaded with the samples within a hood and the rotor lid fixed on the rotor. Afterwards, the aerosol-tight system of rotor and lid is transferred to the centrifuge. The rotor can then be fixed within the centrifuge without opening the lid. After the run, the entire rotor assembly, including the lid, is removed from the centrifuge to the hood for further steps, maintaining the samples within a closed system.


Theory:

Protocols for centrifugation typically specify the amount of acceleration to be applied to the sample, rather than specifying a rotational speed such as revolutions per minute. The acceleration is often quoted in multiples of g, the acceleration due to gravity at the Earth's surface. This distinction is important because two rotors with different diameters running at the same rotational speed will subject samples to different accelerations.

The acceleration can be calculated as the product of the radius and the square of the angular velocity.

Relative centrifugal force (RCF) is the measurement of the force applied to a sample within a centrifuge. This can be calculated from the speed (RPM) and the rotational radius (cm) using the following calculation.

g = RCF = 0.00001118 × r × N x N

Where:


g = Relative centrifuge force
r = rotational radius (centimeter, mm)
N = rotating speed (revolutions per minute, r/min)


To avoid having to perform a mathematical calculation every time, one can find nomograms for converting RCF to rpm for a rotor of a given radius. A ruler or other straight edge lined up with the radius on one scale, and the desired RCF on another scale, will point at the correct rpm on the third scale. Example Based on automatic rotor recognition, up to date centrifuges have a button for automatic conversion from RCF to rpm and vice versa.

Previous Page Next Page

People Searching On This Page:
  • laboratory centrifuge
  • email sorvoll.com loc:IN
  • d8 email loc:IN
  • laboratorio1 email loc:IN
  • pics of isopycnic centrifuge
  • Laboratory Centrifuges
  • high speed separate density
  • laboratorio email loc:IN
  • high centrifuge rotor which have capacity to accommodate different size tubes
  • orce imbalance strains the spindle and may result in damage to the centrifuge or personal injury
  • centrifugation
  • type centrifuge
  • centrifuge chennai
  • fotos de la centrifuga del laboratorio
  • basic principle of differential centrifugation

Related Pages


Overview of Boiler

Overview of Boiler

Articles | Engineering
Date:
15-Dec-2011  Views: 5941

Vessel that heats water to become hot water or steam• At atmospheric pressure water volume increases 1,600 times• Hot water or steam used to transfer ...
Overview of Continuous distillation

Overview of Continuous distillation

Articles | Engineering
Date:
09-Dec-2011  Views: 3237

Continuous distillation is an ongoing separation process in which a liquid mixture of two or more miscible components is continuously fed into the pro ...
Overview of Fluid Bed Dryer

Overview of Fluid Bed Dryer

Articles | Engineering
Date:
29-Nov-2011  Views: 4426

Fluid bed processing involves drying, cooling, agglomeration, granulation, and coating of particulate materials. It is ideal for a wide range of both ...
Process Overview of Caustic Soda

Process Overview of Caustic Soda

Articles | Advertising
Date:
28-Nov-2011  Views: 2027

Over 95% of the capacity to produce chlorine and essentially 100% of the capacity to produce caustic soda (sodium hydroxide, NaOH) are based on the el ...
Overview of Manual Top Discharge Centrifuge

Overview of Manual Top Discharge Centrifuge

Articles | Engineering
Date:
28-Nov-2011  Views: 995

One of the simplest types of centrifuge widely used in the industry. The solid material is scooped out manually from the top of the centrifuge. ...
Post Your Comments (No Login Require)
Name : (required)
Email : (required)
Website :

Comment : (required)

32  + 8 =     
Comments
People Searched About:
Laboratory Centrifuge   |   Email Sorvoll.Com Loc:IN   |   D8 Email Loc:IN   |   Laboratorio1 Email Loc:IN   |   Pics Of Isopycnic Centrifuge   |   Laboratory Centrifuges   |   High Speed Separate Density   |   Laboratorio Email Loc:IN   |   High Centrifuge Rotor Which Have Capacity To Accommodate Different Size Tubes   |   Orce Imbalance Strains The Spindle And May Result In Damage To The Centrifuge Or Personal Injury   |   Centrifugation   |   Type Centrifuge   |  
Google : 472 times | Yahoo : 44 times | Bing : 217 times |