Plate heat exchanger

By: doyouknow | Views: 3893 | Date: 29-Nov-2011

A plate heat exchanger is a type of heat exchanger that uses metal plates to transfer heat between two fluids. This has a major advantage over a conventional heat exchanger in that the fluids are exposed to a much larger surface area because the fluids spread out over the plates. This facilitates the transfer of heat, and greatly increases the speed of the temperature change. Plate heat exchangers are now common and very small brazed versions are used in the hot-water sections of millions of combination boilers. The high heat transfer efficiency for such a small physical size has increased the domestic hot water (DHW) flow rate of combination boilers. The small plate heat exchanger has made a great impact in domestic heating and hot-water. Larger commercial versions use gaskets between the plates, smaller version tend to be brazed.

The concept behind a heat exchanger is the use of pipes or other containment vessels to heat or cool one fluid by transferring heat between it and another fluid. In most cases, the exchanger consists of a coiled pipe containing one fluid that passes through a chamber containing another fluid. The walls of the pipe are usually made of metal, or another substance with a high thermal conductivity, to facilitate the interchange, whereas the outer casing of the larger chamber is made of a plastic or coated with thermal insulation, to discourage heat from escaping from the exchanger.

The plate heat exchanger (PHE) was invented by Dr Richard Seligman in 1923 and revolutionized methods of indirect heating and cooling of fluids. Dr Richard Seligman founded APV in 1910 as the Aluminum Plant & Vessel Company Limited, a specialist fabricating firm supplying welded vessels to the brewery and vegetable oil trades.

Design of plate and frame heat exchangers

The plate heat exchanger (PHE) is a specialized design well suited to transferring heat between medium- and low-pressure fluids. Welded, semi-welded and brazed heat exchangers are used for heat exchange between high-pressure fluids or where a more compact product is required. In place of a pipe passing through a chamber, there are instead two alternating chambers, usually thin in depth, separated at their largest surface by a corrugated metal plate. The plates used in a plate and frame heat exchanger are obtained by one piece pressing of metal plates. Stainless steel is a commonly used metal for the plates because of its ability to withstand high temperatures, its strength, and its corrosion resistance. The plates are often spaced by rubber sealing gaskets which are cemented into a section around the edge of the plates. The plates are pressed to form troughs at right angles to the direction of flow of the liquid which runs through the channels in the heat exchanger. These troughs are arranged so that they interlink with the other plates which forms the channel with gaps of 1.3–1.5 mm between the plates.

The plates produce an extremely large surface area, which allows for the fastest possible transfer. Making each chamber thin ensures that the majority of the volume of the liquid contacts the plate, again aiding exchange. The troughs also create and maintain a turbulent flow in the liquid to maximize heat transfer in the exchanger. A high degree of turbulence can be obtained at low flow rates and high heat transfer coefficient can then be achieved.

A plate heat exchanger consists of a series of thin, corrugated plates which are mentioned above. These plates are gasketed, welded or brazed together depending on the application of the heat exchanger. The plates are compressed together in a rigid frame to form an arrangement of parallel flow channels with alternating hot and cold fluids.

As compared to shell and tube heat exchangers, the temperature approach in plate heat exchangers may be as low as 1 °C whereas shell and tube heat exchangers require an approach of 5 °C or more. For the same amount of heat exchanged, the size of the plate heat exchanger is smaller; because of the large heat transfer area afforded by the plates (the large area through which heat can travel). Expansion and reduction of the heat transfer area is possible in a plate heat exchanger.

Evaluating plate heat exchangers

All plate heat exchangers look similar on the outside. The difference lies on the inside, in the details of the plate design and the sealing technologies used. Hence, when evaluating a plate heat exchanger, it is very important not only to explore the details of the product being supplied, but also to analyze the level of research and development carried out by the manufacturer and the post-commissioning service and spare parts availability.

An important aspect to take into account when evaluating a heat exchanger are the forms of corrugation within the heat exchanger. There are two types: intermating and chevron corrugations. In general, greater heat transfer enhancement is produced from chevrons for a given increase in pressure drop and is more commonly used than intermating corrugations.

Plate heat transfer equation

The total rate of heat transfer between the hot and cold fluids passing through a plate heat exchanger may be expressed as: Q = UA∆Tm where U is the overall heat transfer coefficient, A is the total plate area, and ∆Tm is the temperature difference. U is dependent upon the heat transfer coefficients in the hot and cold streams.


Previous Page Next Page

People Searching On This Page:
  • plate heat exchanger gambar
  • structure plate type exchanger
  • plate heat excganger
  • Richard seligman in 1923
  • heat exchangerS
  • plate type heat exchanger
  • gambar plat type heat exchanger
  • gambar plat type heat exchager
  • Gasketed plate-and-frame heat exchangers
  • plate heat exchanger
  • plat hit exanger
  • plate and frame heat exchanger
  • small heated changer
  • plate heat exchanger animation
  • plate heat exchangers stream flow animation

Related Pages

Shell and tube heat exchanger

Shell and tube heat exchanger

Articles | Engineering
29-Nov-2011  Views: 5206

A shell and tube heat exchanger is a class of heat exchanger designs. It is the most common type of heat exchanger in oil refineries and other large c ...
Standard Operating Procedure (SOP) for Heat Exchanger

Standard Operating Procedure (SOP) for Heat Exchanger

Articles | Engineering
03-Oct-2011  Views: 4295

When the heat exchanger is isolated, minor maintenance such as clearing blockages, cleaning, lubrication, and oil level checks can be carried out in a ...
Usage Of Resume templates

Usage Of Resume templates

Articles | Careers | Resumes
31-Aug-2011  Views: 2227

This article summarizes on the usage of Resume templates. and it also specifies what are the important points to be remember while writing a resume.An ...
Face the heat with all the stylish spring/summer clothes for women

Face the heat with all the stylish spring/summer clothes for women

Articles | Shopping | Clothing
02-Jul-2011  Views: 1525

With winter gone, its time you experience the warmth of the sun using the lavish spring and summer collections for a fashionable makeover. ...
Heating Marketing & Advertising

Heating Marketing & Advertising

Articles | Advertising | Online Promotion
11-May-2011  Views: 1439

We are a HVAC Marketing Analytics and Optimization company with offices in Omaha Nebraska. We started in the Automotive Industry online in 2004. We ...
Post Your Comments (No Login Require)
Name : (required)
Email : (required)
Website :

Comment : (required)

30  + 6 =     
People Searched About:
Plate Heat Exchanger Gambar   |   Structure Plate Type Exchanger   |   Plate Heat Excganger   |   Richard Seligman In 1923   |   Heat Exchangers   |   Plate Type Heat Exchanger   |   Gambar Plat Type Heat Exchanger   |   Gasketed Plate-And-Frame Heat Exchangers   |   Plate Heat Exchanger   |   Plate And Frame Heat Exchanger   |   Small Heated Changer   |   Heat Exchanger Engineering   |   Plate Heat Exchanger Overhauling Procedure   |   Exchanger   |   Water To Water Plate Heat Exchanger   |   Plate Heat Exchanger Concept   |   Heat Exchanger Plate   |  
Google : 1140 times | Yahoo : 38 times | Bing : 448 times |